• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Advertise
  • Subscribe

Linear Motion Tips

Covering Linear Motion Systems, Components and Linear Motion Resources

  • News
    • Editor’s blog
    • Industry news
    • Motion Casebook
  • Applications
  • Slides + guides
    • Ball + roller guides
    • Track roller (cam + wheel) guides
    • Crossed-roller slides
    • Linear bearings
    • Plastic + composite guides
  • Drives
    • Ball + lead + roller screws
    • Belt + chain drives for linear
    • Rack + pinion sets
  • Actuators
    • Ball + leadscrew driven
    • Belt + chain driven
    • Linear motors
    • Mini + piezo + voice coil
    • Rack + pinion driven
    • Rigid-chain actuators
  • Encoders + sensors (linear) + I/O
  • Stages + gantries
  • Resources
    • Suppliers
    • Video

Smart mechatronics add capabilities to linear motion applications

★ By Lisa Eitel Leave a Comment

Today’s manufacturing system OEMs and automation end users are constantly seeking technology advancements to help make their lives easier. Industry 4.0 innovations have spurred a new class of smart technologies that combine digital electronics and communication interfaces for more sophistication, functionality, and ease of use.

By Richard Hansen • Senior automation engineer | Bosch Rexroth Corp.


As more manufacturing companies embrace Industry 4.0-ready technology, emerging smart mechatronics technologies are giving machines greater intelligence and versatility. These advanced systems are also easier to specify, order, and deploy than past options — enhancing their value to OEMs and end users.

Understanding the capabilities of smart mechatronics can help system design engineers asses how best to leverage these mechatronics to making their manufacturing solutions highly competitive.

Partner with mechatronics suppliers that offer engineering expertise and all components (including linear motion products, controllers, servo drives, and operator software) to build top-performance mechatronics solutions.

Modern mechatronics are integrated and versatile

Mechatronics are systems and subassemblies that combine disparate mechanical and electronic components into solutions dedicated to specific tasks. In the world of motion, two examples are product assembly and transport satisfied by mechatronic linear motion systems and Cartesian robots. Core to mechatronics is tight integration of electronic motors, controls, sensors, and linear components.

Mechatronics could be considered a forerunner of Industry 4.0 technologies.

Smart mechatronics takes the concept further — taking the form of complete solutions that incorporate advanced sensors and operator-friendly controller platforms. These systems yield:

• Realtime data on machine performance
• Realtime data on manufacturing quality as applicable
• Precise control and execution of motion sequences
• Automated tracking of production data and throughput
• Easy connectivity with machine-level and plantwide management systems

Above: Smart mechatronics systems support transparent production processes by enabling realtime condition monitoring and predictive maintenance.

Smart mechatronics step one: Online configuration

Smart mechatronics are faster and easier to design and commission than previous mechatronics systems. That’s helpful because mechatronics are by their very nature quite complex — demanding concurrent consideration and sizing of multiple linear components, drives, controllers, and operator interfaces … and then their careful combination.

The first step in specifying, purchasing, and commissioning a smart mechatronics machine is to leverage online tools accessible via supplier portals. These configuration tools let engineers build intelligent systems ready to operate “out of the box” with minimal programming … so are perhaps most helpful to engineers having just a basic understanding of electrical and fluid-power actuation (including linear motion) and motion controls. Users enter parameters such as stroke, workpiece weight, and cycle time, which then generates an output that can be verified in the online tool’s CAD environment. The following sizing and configurator prompts, all the components for the complete mechatronic solution — such as a Cartesian robot, pressing machine, or joining machine — can be specified in one go. It’s an option that lets engineers obtain a complete solution from a single supplier — receiving an integrated system shipped with preprogrammed motion sequences ready for plug-and-produce implementation.

Some of the most advanced smart mechatronics take the form of linear motion systems such as Cartesian handling robots that execute pick-and-place tasks. Bosch Rexroth’s Smart Function Kit for Handling lets engineers use online configuration tools to size and specify all linear modules, actuators, cabling, sensors, electric drives, and controls to complete such handling systems.

Smarter, simpler operational control

Smart mechatronics can enhance productivity and flexibility usually with “transparent” production processes — with sensors for realtime condition monitoring.

Just consider how some manufacturers offer operation-specific mechatronic function kits to support such monitoring. For example, one function kit for a pressing machine might include an electromechanical cylinder, servo drive, motor, controller, sensors, and operator software to support pressing and joining assembly operations. Machines built using such a function kit are easy to implement, as the components come with operating software preinstalled … and automatic parameterization ready to run on the servo drive — so no motion control programming knowledge is needed to bring the machine online. The software features a drag-and-drop graphical user interface (GUI) that lets operators intuitively build production sequences — such as pressing ball bearings into a housing, for example.

A Smart Function Kit for Pressing from Bosch Rexroth (part of the Smart MechatroniX platform) combines an electromechanical cylinder, servo drive and motor, controller, sensors, and operator software to support a wide range of assembly operations.

In addition, the machine can come with an integrated force sensor to measure and track operations. For example, such sensors in a bearing-press application might track the linear actuator to ensure it applies the exact right force to insert the balls into their bearing housing. Meanwhile, system controls can also execute quality control by ensuring that the actuators properly run through their precisely controlled sequences. As such sequences on a pressing machine typically repeat hundreds or even thousands of times per hour, the system’s controller records and then forwards for storage the measurements of each motion cycle. Operators can then use tools in the controller package to create visualizations of the process results. These might map whether pressing forces exceeded or failed to meet process thresholds … and let operators analyze force-displacement curves in realtime at their workstations. Such data lets experienced machine operators maintain top manufacturing quality and productivity sans any specialized programming or quality analytics development by expert software engineers.

In addition, data can also be exported via system interfaces to plantwide or cloud-based manufacturing analytics systems … making the smart mechatronics system an integral component of a company’s Industry 4.0 platform.

Similar capabilities are also being deployed for other factory automation scenarios, including linear motion systems such as Cartesian handling robots for pick-and-place or transport operations. They use similar online configuration tools to size and specify all the linear modules, actuators and end effectors, cabling, sensors, electric drives, and controller necessary for complete handling systems.

A Smart Function Kit for Pressing lets engineers leverage the power of Smart MechatroniX online tools and drag-and-drop programming to build, order, and commission their pressing station.

Smart mechatronics applications in action

Smart mechatronics demonstrate how sophisticated technology can solve complex engineering issues in a simpler way. In a common industry scenario, machine builders have typically tried to develop their own mechatronics assemblies by ordering and integrating separate components — linear actuators, controllers, power supplies, end effectors and more. This process is often cumbersome and time-consuming.

At many companies or system integrators, it’s common for the mechanical engineering group to be responsible for specifying and ordering one set of components while the electrical group orders its components. Such arrangements are more challenging for the purchasing department, and the engineering staff is tasked to make it all fit together physically and program it to ensure it works as specified.

The smart mechatronics concept changes that paradigm and, in the process, frees up the engineers so they can devote time and resources to more complex and challenging design issues.

Consider a real-world plug-and-produce smart mechatronics example. A leading sensor manufacturer was setting up a new assembly line for various types of rotary encoders. The new line was designed to be highly flexible and economical, with the ability to make different products in small batches with exact pressing and joining processes and automatic documentation of process data for quality assurance. The company opted to use a Smart Function Kit for Pressing, supplied as a preconfigured complete package with zero programming knowledge required. As a result, the sensor manufacturer was able to set up the line in a very short time before starting operation.

A key production step is pressing a small lid precisely onto the sensor housing with the highest precision. The Smart Function Kit is suitable for forces from 2 to 30 kN and combines standard components such as an EMC electromechanical cylinder, force sensor, servo motor, drive controller and industrial PC. The browser-based HMI software can also be operated via tablet.

Instead of laboriously writing code for the pressing processes, programming takes place visually. Select the software blocks via drag-and-drop, combine them, enter the parameters and the workflow is complete. The drive controller parameterizes itself automatically, and a wizard guides the user intuitively through the commissioning process. In addition, the process data can be shown live and is considered along with the force displacement curve in the IT system for quality assurance management and analysis purposes.

No doubt — the benefits and advantages offered by smart mechatronics technology will help manufacturers build more production-ready systems with the intelligence and sensor technology built-in to support Industry 4.0 requirements.

Although the smart mechatronics concept is very intuitive, it’s still important to work with mechatronics suppliers whose portfolios and engineering expertise encompass the full range of components — linear motion products, controllers, servo drives and operator software — necessary to build complete, high-performance mechatronics solutions. It’s also important to assess the quality and ease of use of their configuration tools, to make certain that the ease of use promised by the smart mechatronics movements — from start to finish — is fully delivered. This helps to ensure that machine builders and end users can fully leverage the plug-and-produce benefits of smart mechatronics in their operations.

Bosch Rexroth | www.boschrexroth.com

You Might Also Like

Filed Under: Applications, Featured, Hydraulic cylinders, Integrated Linear Systems, Linear actuators (all) Tagged With: boschrexroth

Reader Interactions

Leave a Reply

You must be logged in to post a comment.

Primary Sidebar

LEARNING CENTER

Design World Learning Center
“lmt
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
“linear

RSS Motion Control Tips

  • Compact piezo stages with bi-phase motors offer 10 nm resolution
  • Day 1: New technologies at Automate 2025
  • Festo showing multi-axis positioning systems at Automate
  • Rollon marks 50 years of innovation with global expansion
  • New brushless slotless motor for industrial power tools from Portescap

RSS Featured White Papers

  • Robotic Automation is Indispensable for the Logistics Industry’s Continued Growth and Success
  • Reliable Linear Motion For Packaging Machines
  • Technical Brief – “Understanding the Extensive Benefits of Total Linear Positioning Systems.”

Footer

Linear Motion Tips

Design World Network

Design World Online
The Robot Report
Coupling Tips
Motion Control Tips
Bearing Tips
Fastener Engineering
Wire and Cable Tips

Linear Motion Tips

Subscribe to our newsletter
Advertise with us
Contact us
About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy